
An Analysis of Recurrent Neural Networks for
Botnet Detection Behavior

Pablo Torres∗1, Carlos Catania †2, Sebastian Garcia‡3 and Carlos Garcia Garino§4

∗FING, Universidad de Mendoza Mendoza, Argentina
1pablo.dtorres@gmail.com

†FCEyN - ITIC, Universidad Nacional de Cuyo Mendoza, Argentina
2ccatania@itu.uncu.edu.ar

‡CTU - Czech Technical University Prague,Czech Republic
3sebastian.garcia@agents.cvut.fel.cz

§FING - ITIC, Universidad Nacional de Cuyo Mendoza, Argentina
4cgarcia@itu.uncu.edu.ar

Abstract—A Botnet can be conceived as a group of compro-
mised computers which can be controlled remotely to execute
coordinated attacks or commit fraudulent acts. The fact that
Botnets keep continuously evolving means that traditional
detection approaches are always one step behind. Recently,
the behavior analysis of network traffic has arisen as a way to
tackle the Botnet detection problem. The behavioral analysis
approach aims to look at the common patterns that Botnets
follow across their life cycle, trying to generalize in order
to become capable of detecting unseen Botnet traffic. This
work provides an analysis of the viability of Recurrent Neural
Networks (RNN) to detect the behavior of network traffic by
modeling it as a sequence of states that change over time.
The recent success applying RNN to sequential data problems
makes them a viable candidate on the task of sequence behavior
analysis. The performance of a RNN is evaluated considering
two main issues, the imbalance of network traffic and the
optimal length of sequences. Both issues have a great impact
in potentially real-life implementation. Evaluation is performed
using a stratified k-fold cross validation and an independent
test is conducted on not previously seen traffic belonging to
a different Botnet. Preliminary results reveal that the RNN is
capable of classifying the traffic with a high attack detection
rate and an very small false alarm rate, which makes it a
potential candidate for implementation and deployment on
real-world scenarios. However, experiments exposed the fact
that RNN detection models have problems for dealing with
traffic behaviors not easily differentiable as well as some
particular cases of imbalanced network traffic.

Resumen—Una Botnet es un grupo de computadoras que
pueden ser controladas de forma remota para ejecutar ataques
coordinados o cometer fraudes. El hecho de que las Botnets
esten evolucionando constantemente, hace que los enfoques
tradicionales de detección esten siempre un paso por detrás.
Recientemente, el análisis del comportamiento del tráfico de
la red ha surgido como una manera de abordar el problema
de detección de Botnets. El enfoque de análisis de compor-
tamiento tiene como objetivo analizar los patrones comunes
que una Botnet sigue en todo su ciclo de vida, tratando de
generalizar a fin de llegar a detectar tráfico de Botnet no
visto. En este trabajo se presenta un análisis de la viabilidad
de aplicar Redes Neuronales Recurrentes (RNN) para detectar
el comportamiento del tráfico de red. Para esto, el tráfico de la
red es modelado como una secuencia de estados que cambian
con el tiempo. El reciente éxito de la aplicación de RNN a los
problemas de datos secuenciales hacen de estas un candidato
viable a la tarea de análisis de comportamiento basado en se-
cuencias. El rendimiento de un RNN es evaluado considerando
dos problemas principales, el desequilibrio de tráfico de red y

la longitud óptima de las secuencias. Ambos problemas tienen
un gran impacto en una posible aplicación en la vida real.
Los experimentos se realizan mediante una validación cruzada
estratificada a lo que se agrega una prueba independiente sobre
tráfico no visto anteriormente, el cual pertecene a una Botnet
diferente. Los resultados preliminares revelan que las RNN son
capaces de clasificar el comportamiento del tráfico con una
alta taza de detección de ataques y una tasa de falsas alarmas
casi insignificante, sin embargo, los experimentos expuestos
en este trabajo exponen el hecho de que los modelos de
detección basados en RNN presentan problemas para hacer
frente a los comportamientos de tráfico que no son fácilmente
diferenciables, ası́ como algunos casos particulares de tráfico
no balanceado.

Index Terms—Traffic Behavior, Botnet Detection, Recurrent
Neural Networks

I. INTRODUCTION AND MOTIVATION

According to Hacheem et al. [1], a Botnet could be de-
fined as a number of Internet computers that have been set up
to establish connections to other computers on the Internet.
The continuous evolving behavior of Botnets has caused
that most of the traditional detection approaches failed to
provide the necessary detection results [2]. Recently, the
rise of behavioral detection approaches [3] have proved to
be more adequate to deal with the constant change in the
Botnet activities. A behavioral detection approach is based
on finding the common patterns that Botnets follow across
their life cycle, trying to generalize them in order to become
capable of detecting unseen Botnet traffic. For instance, no
matter what actions a Botnet has been ordered to perform,
the fact is that periodically all the bots need connect to the
Botmaster to receive new orders. Such kind of behaviors
observed only after a long period of time is precisely the
object of behavioral detection methods.

The Strastosphere [4] Intrusion Prevention System (IPS)
project, is an initiative for providing to the community an
state of the art behavioral IPS. The current Stratosphere
IPS detection approach is based on first order Markov
Models. Even thought the results have been promising,
and improvements are continuously being developed, first
order Markov models suffer from issues for memorizing a
large state sequences. On the other hand, Recurrent Neural
Network (RNN) have been proved to successfully deal with

large sequences, which makes them a viable candidate on
the task of sequence behavior analysis. The present article
discuss the application of RNN to detect the behavior of
network traffic. In particular, an analysis of the application
of a Large Short Term Memory (LSTM) network [5] for
recognizing the different sequences of states that change
over time. It is worth noticing that since the goal behind the
Stratosphere project is to develop a fully functional IPS, the
present work not only considers the detection performance
of the LSTM detection models, but also the issues regarding
the deployment of such type of Artificial Neural Network
(ANN) on real network scenarios. In particular, two known
problems are discussed: First, the capabilities of LSTM for
dealing with imbalance network traffic. Second, the optimal
length of state connections required for efficiently detecting
traffic behaviors.

The rest of the article is organized as follows: Section II
describes the strategy for generating the behavioral models
from network traffic as it was proposed by the Stratosphere
project. Then, the section III gives details about how a
LSTM network has been adapted to perform behavior detec-
tion. In section IV, a description of the experiment design
methodology followed for evaluating the performance of the
LSTM detection model is provided. The results of evaluating
the different sampling techniques and the optimal connection
length are shown in sections VII and VII, respectively. An
analysis of the results of a LSTM detection model on non
previously seen data is presented in sections VII and VIII.
Finally, the concluding remarks are exposed in section IX.

II. BEHAVIORAL MODELS

Behavioral models of malicious connections in the net-
work are created by studying the long term characteristics
of the network traffic. This kind of models have been
implemented inside the Stratosphere Intrusion Prevention
System (IPS) [6], which is a large effort for offering a state
of art IPS for Non Governmental Organizations (NGO). The
project involves a collaboration between two universities
(CVUT and UNCuyo) together with other organizations.

The approach used by Stratosphere IPS to model the
behavior of a connection, starts by aggregating the flows
according to a 4-tuple composed of: the source IP address,
the destination IP address, the destination port and the
protocol. All the flows that match a tuple are aggregated
together and referred as a Stratosphere connection. From
a traffic capture several of these Stratosphere connections
are created. Each one of the these Stratosphere connections
contains a group of flows. The behavior of a connection is
computed as follows:

1) Extract three features of each flow: size, duration and
periodicity.

2) Assign to each flow a state symbol according to the
features extracted and the assignment strategy shown
in Table I.

3) After the assignment, each connection has its own
string of symbols that represents its behavior in the
network.

An example of these behavioral models is shown in Fig.
1. The figure shows the symbols representing all the flows

for a Stratosphere connection based on UDP protocol from
IP address 10.0.2.103 to port 53 of IP address 8.8.8.8.

2.4.R*R.R.R*a*b*a*a*b*b*a*R.R*R.R*a*a*b*a*a*a*a*

Fig. 1. An example of the behavioral model of connection from IP address
10.0.2.103 to destination port 53 at IP address 8.8.8.8 port 53 using protocol
UDP.

Without even considering any detection method, the be-
havioral models based on symbols shown in Fig. 1 have
proved to be a good visualization approach for helping
security analysts in their daily tasks.

For performing actual detections of malicious behavior,
the current strategy followed by the Stratosphere IPS is
to use a Markov Chain-based analysis of the transition
probabilities from one symbol to the next [3]. Even though
this approach has proved to be effective in several real-life
scenarios, Markov Chain analysis suffers from an important
limitation, i.e. the calculation of the transition probabilities
for each state only depends on the previous state.

III. RNN DETECTION MODELS

LSTM networks are a special type of RNN first intro-
duced by Hochreiter & Schmidhuber in 1997 [5]. LSTM
networks can potentially become an improvement over the
previous detection method based on Markov Models, since it
is not necessary to predefine the number of states to analyze
in the behavioral model sequence. For space reasons, a
detailed explanation about LSTM networks has not been
included in this article. The reader is referred to [5] for a
complete explanation about LSTM.

The idea proposed in this work consists of using LSTM
networks for building detection models based on the behav-
ior of connections. The strategy used follows the classical
supervised Machine Learning (ML) approach to build clas-
sifications models. Such approach is based on the use of
historical data that have been previously labeled as Normal
or Botnet and then train the LSTM network to finally
obtain a detection model capable of recognizing connections
behaviors.

The strategy used for encoding behavioral connections
to LSTM input units consists of transforming each symbol
into a binary vector. According to Table I there are 50

TABLE I
SYMBOL ASSIGNMENT STRATEGY FOR BUILDING BEHAVIORAL

MODEL ACCORDING TO THE STRATOSPHERE PROJECT.

Size Small Size Medium Size Large
Dur.

Short
Dur.
Med

Dur.
Long

Dur.
Short

Dur.
Med

Dur.
Long

Dur.
Short

Dur.
Med

Dur.
Long

Strong Per a b c d e f g h i
Weak Per. A B C D E F G H I
Weak Non-Per. r s t u v w x y z
Strong Non-Per R S T U V W X Y Z
No Data 1 2 3 4 5 6 7 8 9

Symbols for time difference
Between 0 and 5 seconds: .
Between 5 and 60 seconds: ,
Between 60 and 5 mins: +
Between 5 mins and 1 hour *
Timeout of 1 hour: 0

possible symbols used in a behavioral model. Therefore, it is
possible to represent each one of these symbols on a binary
vector of size 50. Each element on the vector represents
a symbol. Given a symbol, only the element representing
such symbol will be active on the vector, whereas the rest
remains inactive. An example of representation scheme can
be observed in Eq. 1 where the vector for symbol a and in
Eq. 2 that do the same for the symbol b

a = [1 0 0 0 · · · 0 0 0] (1)

b = [0 1 0 0 · · · 0 0 0] (2)

The complete sequence of the model behavior is encoded
in the form of a matrix (see Eq. 3) where each row rep-
resents a different symbol. In addition, the matrix subscript
indicating the row number is used to guarantee the correct
time line of each symbol inside the behavioral connection.
The matrix is then fed to the input units layer of the LSTM
network one row at the time.

1 0 0 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 1 0 0 · · · 0 0 0
0 0 0 0 · · · 0 0 1

 (3)

Two main issues are observed regarding the application
of LSTM for building detection models.

The first issue is focused on the size and proportion of the
historical data used to build the detection models. A known
limitation of supervised ML approaches such as ANN is
their need of balanced labeled data. In other words, it is
required that the number of connection behaviors belonging
to the Botnet class equals the Normal class. Under these
imbalanced situations, it is possible that the learned model
presents a bias to the majority class.

The second is related to the encoding of the symbols
used for representing the behavioral models from Table I
in a efficient way for LSTM input units. Even thought the
LSTM model has the potential of dealing with an undefined
sequence length, the fact is that at some point, the previous
states of a behavioral model do not have a significant
influence on the current state. Therefore, it is important to
find the optimal length of connection states necessary to
properly detect a malicious behavior and avoid the use of
unnecessary computational time.

IV. EXPERIMENT DESIGN

The proposed LSTM detection method is evaluated
against two different datasets coming from network traffic
captures taken from CVUT university campus networks.
Both datasets are publicly available as part of the Malware
Capture Facility Project (MCFP) [7].

Table II provides brief information about each of the
two datasets. The first two columns show the Label used
for referencing the dataset and a brief description of the
Network behavior included in such group. Then, in column
three and four, the number of connections labeled as Botnet
as well as Normal. Finally, the last column shows the ID of

each of the datasets in the MCFP. It is important to mention
that in these datasets only connections based on the TCP
protocol are considered. Notice that even though dataset A
and B are from the same capture according the MCFP, they
contain traffic of two different Botnets and also they shown a
different class unbalance. While in dataset A Botnet Traffic
surpasses Normal traffic, the opposite situation is observed
in the case of dataset B.

TABLE II
GENERAL INFORMATION ABOUT DATASETS

ID Desc. Botnet Conn. Normal Conn. MCFP IDs
A Bonet Neris 2101 713 CTU13-42
B Bonet DonBot 188 300 CTU13-47

Standard performance metrics for network detection eval-
uation are used for comparing the different approaches
discussed. These metrics correspond to Attack Detection
Rate (ADR) and False Alarm Rate (FAR). ADR is computed
as the ratio between the number of correctly detected attacks
and the total number of attacks. Whereas FAR rate is com-
puted as the ratio between the number of normal connections
that are incorrectly classified as attacks and the total number
of normal connections.

The analysis of the LSTM model performance considers
the two issues observed in section III. The class balance
required for building a proper model detection as well as
the optimal length of connection states required to feed the
LSTM input layer.

To guarantee the independence of the results. Dataset
A is used for training the LSTM network and selecting
the optimal strategy for dealing with the LSTM issues
previously mentioned. Whereas dataset B is used for testing
the performance of the LSTM detection model on unseen
connections

The implementation used in the experiments is based
on the deep learning KERAS framework [8]. The LSTM
hidden layer consists of 128 neurons and the network is
trained using the Resilient Backpropogation algorithm with
a dropout of 0.1 during 30 epochs. Such parameters have
been obtained using a classical grid search strategy.

V. SAMPLING TECHNIQUES FOR DEALING WITH
IMBALANCED CLASSES

The idea behind this experiment is to analyze the influence
of well-known sampling techniques for dealing with imbal-
anced classes on LSTM performance. Specifically, two tech-
niques are considered: Undersampling and Oversampling.
Undersampling consists of randomly removing instances
from the majority class in order to balance both classes.
Whereas in the Oversampling technique, randomly selected
instances from the minority class are duplicated until classes
get even.

Both sampling techniques were applied to dataset A. An
LSTM network was trained using stratified k-fold cross
validation with k equals to 10. Given the randomness
associated to both sampling techniques, the previous process
was executed 50 times. Table III shows the average ADR and
FAR values after 50 executions for both strategies. Results
are compared with ADR and FAR values when no sampling
strategy were used.

TABLE III
AVERAGE AND STANDARD DEVIATION VALUES FOR ADR AND FAR

AFTER 50 EXECUTIONS FOR DIFFERENT SAMPLING STRATEGIES

ADR FAR
Avg. Sd. Avg. Sd.

No Sampling 0.9796 0.0106 0.0372 0.0227
Under Sampling 0.9680 0.0197 0.0195 0.0179
Over Sampling 0.9601 0.0132 0.0111 0.0068

In general, the observed ADR values do not show a
significant variation on the three evaluates cases. However,
a minimal performance loss is observed when using the
two sampling techniques. In the case of the Undersample
technique, this behavior can be explained by the fact that
less malicious connections have been used to train the
LSTM network. Therefore, the obtained detection model
may not have the opportunity to learn potentially valuable
information from these lost connections. More difficult is
to explain the results from the OverSampling technique,
given that LSTM network has not suffer from any sample
reduction. However, it is likely that the greater number of
normal samples have influenced in the detection capability
of the learned model. In other words, the bias to classify
a new connection as malicious observed in the case of
no sampling has been reduced since much more normal
connections are included.

Regarding the FAR, an important reduction is observed
when comparing both sampling techniques with the case
when no sampling is applied. It seems that both sampling
techniques have succeeded in reducing the tendency of
classifying most of the connections as malicious observed
in the no sampling case. The results showed no significant
difference between both techniques, even though in average
the Oversampling technique seems to perform better than
undersampling.

In any case, given that the difference between Undersam-
pling and Oversampling is not significant, the Undersam-
pling technique is preferred since there is a considerable
reduction of required data volume.

VI. ANALYSIS OF THE OPTIMAL LENGTH OF THE
BEHAVIORAL MODELS

This second experiment focus on the exploration of the
number of states in connections of the behavioral models
in order to establish the optimal length required to feed the
LSTM input layer. Table IV shows the results for an LSTM
network varying the number of connection states used for
building the detection model. As in experiment from section
VII, a stratified k-fold cross validation with k equals to 10
were used for the evaluation. In this case, however, only the
results of the Undersampling technique are reported.

TABLE IV
AVERAGE AND STANDARD DEVIATION VALUES FOR ADR AND FAR

AFTER 100 EXECUTION CONSIDERING DIFFERENT NUMBER OF STATE
CONNECTIONS

Number of States 4 5 6 10 25 50 100

ADR Avg 0.953 0.955 0.962 0.968 0.970 0.968 0.969
sd 0.024 0.025 0.022 0.022 0.019 0.021 0.021

FAR Avg 0.023 0.021 0.020 0.019 0.018 0.016 0.020
sd 0.017 0.018 0.018 0.017 0.016 0.014 0.039

As can been observed, the better average values for ADR
are those for the case of 25 connection states. Beyond this
point average values decrease. In the case of FAR, such
improvement is observed with the case of 50 connection
states. However, according to standard deviation values,
there is no significant difference in terms of ADR and FAR
when more than 10 connection states are considered. Except
for the case of 100 connection states when performance
seems to decrease.

To explain previous results, it is necessary to analyze
the state frequency distribution of dataset A. Such state
frequency distribution is shown in Fig. 2. There, it is possible
to observe that the distribution shows a positive skew (i.e.
the mass of the distribution is concentrated on the left of
the figure). In general, connections with up to 25 states
have an important representation in the dataset, however the
majority is observed in those connections with state length
up to 10. More interesting is the fact that most of the 6-
length connections are labeled as Botnet, which turn them
into a good pattern for discriminating between Normal and
Botnet behaviors. The latter could be the explanation behind
the lack of a significant variation in the results between
connections of different length: the LSTM detection model
need to consider just the first 6 states to be accurate and the
remaining can be discarded by LSTM algorithm.

Fig. 2. Frequency histogram of the number of states per connection

To sum up, since the difference in performance between
10 and 25 states is negligible (it is about a 0.5% in ADR and
0.2% in FAR), a length of 10 states should be preferred. The
latter choice responds to the reduction in the computational
resources required for training the LSTM network.

VII. LSTM DETECTION MODEL APPLIED TO UNSEEN
TRAFFIC

The idea behind this experiment was to analyze the in-
fluence of Undersampling and the selected state connection
length on the performance of an LSTM detection model.
LSTM detection model has been trained on dataset A using
the selected sampling technique (Undersampling) and the
optimal length of behavioral models (10). Then, the LSTM
detection model was evaluated on dataset B.

Notice that to guarantee an independent and a fair eval-
uation, the LSTM detection model is trained in just one
opportunity. This way, the carried out evaluation is as close
as possible to a real-life situation.

The LSTM detection model tested on dataset B showed
a value of 0.809 for ADR, while in the case of FAR the

observed value was 0.030. As can be noticed, the LSTM
detection model has suffered from a 15% of performance
loss in terms of ADR and 1% in terms of FAR when
compared with results shown in sections and .

An analysis of the detection performance of LSTM on
the connections labeled as Botnet is shown in the Barplot
of Fig. 3. The figure shows, for all the connections labeled
as Botnet, the proportion of connections correctly classified
(shown in color cyan) and the incorrectly classified (shown
in color pink).

C
um

ul
at

ive
 P

er
ce

nt
ag

e

0
20

60
10

0

C
us

to
m

-E
nc

ry
pt

io
n

H
TT

P-
Ad

H
TT

P-
Bi

na
ry

_D
ow

nl
oa

d

H
TT

P-
C

C
12

_N
ot

_E
nc

ry
pt

ed

H
TT

P-
C

C
1_

N
ot

_E
nc

ry
pt

ed

H
TT

P-
C

C
5_

Pl
ai

n_
H

TT
P_

En
cr

yp
te

d_
D

at
a

H
TT

P-
Es

ta
bl

is
he

d

H
TT

P-
Es

ta
bl

is
he

d_
To

_M
ic

ro
so

ft

H
TT

P-
Es

ta
bl

is
he

d_
m

ic
ro

so
ft_

liv
e

H
TT

P-
G

oo
gl

e_
N

et
_E

st
ab

lis
he

d

H
TT

P-
H

TT
P_

To
_M

ic
ro

so
ft

H
TT

PS
-A

tte
m

pt

H
TT

PS
-E

st
ab

lis
he

d

H
TT

PS
-E

st
ab

lis
he

d_
To

_M
ic

ro
so

ft

H
TT

PS
-E

st
ab

lis
he

d_
to

_m
ic

ro
so

ft

O
th

er
-A

tte
m

pt

O
th

er
-E

st
ab

lis
he

d

SM
TP

-A
tte

m
pt

_S
PA

M

SM
TP

-E
st

ab
lis

he
d_

SP
AM

SM
TP

-N
ot

En
cr

yp
te

dS
M

TP
_P

riv
at

eP
ro

xy
1

U
nk

no
w

n-
At

te
m

pt

U
nk

no
w

n-
C

C
7_

C
us

to
m

_E
nc

ry
pt

io
n

U
nk

no
w

n-
Es

ta
bl

is
he

d_
C

us
to

m
_E

nc
ry

pt
io

n

Detected Botnet Not Detected Botnet

2 2 2

1

4

8 8 1251 1 2 1 4 1 5 1 1 1 1 7 1 1 1 4 1 1 1

Fig. 3. Discriminative analysis of connections labeled as Botnet

The information provided by Fig. 3 exposes the fact
that most of the Botnet traffic of dataset B come from
Unknown-Attempt connections. An Unknown-Attempt refers
to an attempt to establish a TCP connection on ports not
commonly associated with standard services. As can be
seen, the LSTM detection model is able to detect all the
cases where this type of behavior is present, including those
labeled as Other-Attempt and SMTP-Attempt-SPAM. The
LSTM detection model has, however, failed to correctly
identify most of the HTTP and HTTPS traffic (represented
in the first 7 bars plotted in Fig. 3) as well as some of the
traffic labeled as Established including SMTP-Established-
SPAM.

The Fig. 4 shows the detection performance of LSTM on
the connections labeled as Normal. In this case, most of the
normal traffic in dataset B corresponds to HTTP or HTTPS
connections and some other services such as Matlab server
of Jabber. As can be seen, the LSTM detection model has
correctly detected the majority of the normal traffic, with
the exception of some of the HTTP traffic.

VIII. DISCUSSION

To analyze the behavior of the LSTM detection model,
first it is necessary to know the characteristics of the dataset
used during the training process. Fig. 5 shows the labels
frequency distribution for connection labeled as Botnet
and normal. It is possible to observe that, for malicious
connections, the most representative traffic corresponds to
SMTP-SPAM-Attempts and attempts to establish an HTTP
connection. There are also a number of connections labeled
as UNKNOWN, which refers to traffic to some unknown
port carrying an unknown protocol. In the case of normal
connections, most of the traffic consists of HTTP and
HTTPS to different sites.

C
um

ul
at

ive
 P

er
ce

nt
ag

e

0
40

80

H
TT

P-

H
TT

P-
IM

H
TT

P-
w

in
do

w
su

pd
at

e

H
TT

PS
-

O
th

er
-J

ab
be

r

O
th

er
-M

at
la

b_
Se

rv
er

O
th

er
-P

os
si

bl
eI

M
AP

Detected Normal Not Detected Normal

218 4 61 2 1 1
8 1

Fig. 4. Discriminative analysis of connections labeled as Normal.

C
um

ul
at

ive
 P

er
ce

nt
ag

e

0
20

40
60

SM
TP

-S
PA

M
-A

tte
m

pt

H
TT

P-
At

te
m

pt

H
TT

P

U
nk

no
w

n

H
TT

P-
C

C
.C

us
to

m
.P

or
t

H
TT

P-
Ad

ve
rti

si
ng

H
TT

PS

H
TT

P-
Ad

N
et

wo
rk

SM
TP

-M
SA

.S
PA

M

U
nk

no
w

n-
Es

ta
bl

is
he

d.
D

at
a

Botnet samples

C
um

ul
at

ive
 P

er
ce

nt
ag

e

0
20

40

H
TT

P

H
TT

P-
G

oo
gl

e

H
TT

PS
-G

oo
gl

e

H
TT

P-
Fa

ce
bo

ok

H
TT

P-
La

st
FM

H
TT

PS

H
TT

PS
-F

ac
eb

oo
k

O
th

er
-R

es
po

ns
e.

C
VU

T.
W

eb
.S

er
ve

r

O
th

er
-M

ic
ro

so
ft.

M
es

sa
ng

er

H
TT

P-
W

ik
im

ed
ia

Normal samples

Fig. 5. Label frequency distribution of the 10 most representative
connections for dataset A.

Connection attempts represent the large majority of the
Botnet traffic used in dataset A. The fact that such type
of traffic consists of only a few states and corresponds to
the short connections shown in connection length histogram
from Fig 2. These connections attempts are behind the
lack of the significant variation in terms of ADR shown
during the exploration of the length of behavioral models
carried out in section VII. The influence of such kind of
behaviors is strong and the remaining behaviors present in
dataset A does not influence the final results. In addition,
normal connections in dataset A do not include such kind of
behaviors. Consequently, the LSTM has correctly detected a
99.9% of all the the connection attempts present in dataset
B. Including SPAM, HTTP and UKNOWN attempts.

By contrast, the LSTM has failed in detecting most of the
HTTP and HTTPS traffic. Such results could be explained
by the imbalance situation observed regarding the labels of
HTTP traffic. The majority of HTTP traffic is labeled as
normal, while the number of HTTP connections labeled as
Botnet are about the 11% of all the HTTP traffic present in
dataset B. Under such situation the LSTM detection models
tends to classify most of the HTTP traffic as normal.

In the case of FAR, it is important to mention that even
with the presence of a majority of normal traffic on dataset
B the value obtained is barely greater than those values
obtained during analysis made in sections VII and VII.
Actually, when considering standard deviations from table
IV, the results do not show a significant difference.

A last observation regarding the results is related with
the actual differences between connections belonging to
both classes. There are behaviors that are clearly more
distinguishable than others. This is the case of the con-
nections attempts, which obviously represent some kind of
abnormal behavior. No matter if such behaviour is caused
by a Botnet or a normal connection, the fact is that a high
number of connection attempts is a situation that any system
administrator can easily recognize. A completely different
situation is the case of HTTP established traffic. Certainly,
such kind of connections are more difficult to recognize as
malicious. An example of this can be seen in the histograms
from Fig. 3, a connection labeled as HTTP-Established
could be really difficult to distinguish from a normal HTTP
connection.

Fig. 6. 2D representation of Botnet and normal connections and the LSTM
model detection classification for dataset B.

The plot from Fig. 6 is a 2D presentation of connections
using Principal Component Analisys (PCA), which provides
a way to analyze the similarity between different connec-
tions. Botnet connections are shown in red while normal are
shown in blue. Additionally, those normal connections in-
correctly detected as Botnet are shown in yellow while those
Botnet connections not recognized are shown in green. In the
figure it is possible to observe that there are many situations
where Botnet and normal connections are very similar. A
clear example of the latter situation can be observed in
the quadrant (3,5) following a row-major order, where most
of the connections are normal and two Botnet connections
are very close to them. Under such level of similarity the
LSTM detection model fails to correctly classify both Botnet
connections. Another example is shown in the quadrant
(3,1) where a Normal connection is incorrectly classified
as Botnet. Such connection is close to a large set of Botnet
traffic and far from normal connections. Therefore, at least
under the current behavioral model, there will be traffic that
could be difficult to differentiate.

IX. CONCLUDING REMARKS

The present work exposed the first steps in the implemen-
tation of the behavioral IPS based on LSTM. In particular,
two main issues regarding the application of LSTM for
detecting network behavior were analyzed. For the case of

traffic imbalanced, Undersampling and OverSampling, two
of the most common sampling strategies, were evaluated
on a dataset with more Botnet than Normal traffic. Results
have shown that if no sampling technique was used FAR
value could increase considerably. Despite its simplicity,
Oversampling resulted a more convenient sampling tech-
nique for improving detection. However, since no significant
difference was observed between both sampling techniques,
the Undersampling technique was preferred because it was
more computationally efficient A similar computationally
efficient approach was followed for establishing the optimal
length of the state of connections, where a minimum of 10
states were selected for training the LSTM detection model.

A totally independent test was carried out on a unseen
dataset with an opposite traffic imbalance situation (more
normal than Botnet traffic) and a different type of Botnet. In
general, the LSTM detection model has shown competitive
values for ADR and FAR. Even the FAR values have
remained inside the expected levels shown during cross
validation. The latter is a very important result in a future
real-life implementation.

A deeper analysis showed that LSTM was capable of
detecting correctly those Botnet behaviors that were signif-
icantly different to Normal. On the other hand, when such
differences were not obvious, the class containing most of
the similar behavior was preferred (as is the case of HTTP
protocol).

Finally, more experiments must be conducted in this
direction, analyzing with more details other possible solu-
tions regarding the per-connection imbalance situations. In
particular, the case of normal traffic sampling. Additionally,
a more effective way represent information to LSTM could
help in differentiating traffic behaviors

ACKNOWLEDGMENTS

The authors would like to thank the financial support
received by UNCuyo and CVUT during this work. In par-
ticular the founding provided by Faculty Mobility program
of the International Relations Department from UNCuyo.
Finally, the financial support from SeCTyP-UNCuyo through
project No. M004 is also gratefully acknowledged.

REFERENCES

[1] N. Hachem, Y. Ben Mustapha, G. G. Granadillo, and H. Debar, “Bot-
nets: Lifecycle and Taxonomy,” in Network and Information Systems
Security (SAR-SSI), 2011 Conference on. La Rochelle, France: IEEE,
May 2011, pp. 1–8.

[2] C. A. Catania and C. G. Garino, “Automatic network intrusion de-
tection: Current techniques and open issues,” Comput. Electr. Eng.,
vol. 38, no. 5, pp. 1062–1072, Sep. 2012.

[3] S. Garcia, “Identifying, Modeling and Detecting Botnet Behaviors in
the Network,” Ph.D. dissertation, UNICEN University, 2014.

[4] Straosphere IPS Project, “Stratoshpere Project,” 2015. [Online].
Available: https://stratosphereips.org

[5] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[6] S. Garcia, “Modelling the Network Behaviour of Malware To Block
Malicious Patterns . The Stratosphere Project : a Behavioural Ips,” in
Virus Bulletin, no. September, 2015, pp. 1–8. [Online]. Avail-
able: https://www.virusbtn.com/pdf/conference slides/2015/Garcia-
VB2015.pdf

[7] Garcia, Sebastian, “Malware Capture Facility Project,” 2013. [Online].
Available: https://mcfp.felk.cvut.cz/

[8] KERAS Development Team, “Keras: Deep Learning library for
Theano and TensorFlow ,” 2016. [Online]. Available: https://keras.io

